(3)

水田転作での

飼料牛産について

農林水産省草地試験場 生 理 第 三 研 究 室 長 飯 H 克 実

1. はじめに

今年の水田転作での飼料作物は、全国で15.9万ha(6 月末の中間集計)。これは,57年の17.5万haより約1.5万 haも少ないが、相変らず転作物の約30%を占めトップ。 しかも、府県が約80%で圧倒的に多く、自給飼料の生産 基盤としての役割りが大きい。

最近は、集団化と明渠や暗渠での排水対策などで安定 多収も一般化したが、平坦地のため地形的に集中豪雨に よる湛水などで、湿害による低収も各地でみられる。

飼料作物は上手に作って上手に利用することが、必要 で、収量性や省力など生産性がポイントになる。耕種農 家の"すて作り"はなくなったが、畜産農家にとって飼 料基盤を拡大する絶好のチャンスで, 借地や請負い耕作 などが全国的にふえている。とくに、自給率を高めると 所得がふえるから、積極的な対応と生産技術などのレベ ルアップが経営改善の基本になる。

2. 転作飼料作の実態

草種別の面積は集計中で、57年の場合、表1のように 北海道では永年牧草が多く、府県では牧草、トウモロコ シ,ソルガム,そして青刈イネが多い。排水の悪い場合 には青刈イネなど耐湿性の草種がベースになるが、刈取 り作業など大変である。そこで、集団化や排水対策によ って作業性を改善し、トウモロコシなどの安定多収がふ え,有利性を高めている事例も多い。

表 1 水田転作での飼料作物の栽培面積(昭和57年)

	作付				草種別	l面積(万、ha)				
区分	面積	永年	1年生	トウモ	ソル	青刈	青刈	根薬類	殼類	その他
	(II ,ha)	牧草	牧草	ロコシ	ガム	イネ	作物	似米州	分文月代	ての肥
全 国	17.5	5.6	2.6	2.6	2.2	2.5	1.5	0.1	0.3	0.1
北海道	3.8	2.9	0.0	0.3	0.0	0.0	0.4	0.0	0.2	0.0
府 県	13.7	2.7	2.6	2.3	2.2	2.5	1.1	0.1	0.1	0.1

注) 府県の占める割合は78%で、1年生牧草は主としてイタリアンラ イグラス。その他のうち、ハトムギが273ha。

57年の府県での「飼料作物は「44.4万 ha」で、「そのうち 13.7万haが水田転作だから、全体の約30%を占め、ウェ イトが高い。つまり、府県では水田転作によって支えら れている場合も多く、とくにソルガムは全体で3.8万ha, そして、水田転作が2.2万haだから全体の約60%を占め ている。トウモロコシやソルガムなど長大作物は太陽エ ネルギーを立体的に利用することもあって多 収が 容易 で、しかも、トウモロコシは良質で嗜好性がよいので高 く評価されている。

酪農家の場合, 自作水田の全面転作に加え, 借地や作 業受託が多く、計画的、積極的な栽培が多い。とくに, 集団としての対応もふえて有利性も高いが、栽培技術な どにより $10a \cdot 1$ 作あたり生草重で $2 \sim 6$ トン, 生草1kgあたり5~20円など、収量性や生産性の幅が大きい。

耕種農家が生産し畜産農家が利用する, いわゆる, 粗 飼料の流涌もみられるが、作業や流通価格などの問題も 多く、残念ながら期待するほど普及していない。 そこ で、大型機械とサイロをもった畜産農家の生産が主体 で、多収よりも作業優先の場合が多く、梅雨期と秋雨期の 作業をさけた一斉刈りなど、計画的な栽培がふえている。

3. 有利性を高めるポイント

安定多収, 高能率作業には集団化や排水対策 が基本 で、表2のように多収・低コスト生産ができる。交換耕

表 2 集団化と青刈トウモロコシの生産性

(昭和56福岡・K生産組合)

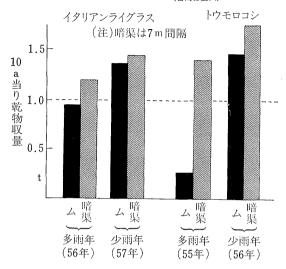
区分	10a 当生草重	1 kg 当生産費
連担団地	6.3t(131)%	6.0円(67)%
分散転作	4.8 (100)	9.0 (100)

作などによる団地化, 明渠や暗渠などの排水効果が大き く、とくに、トウモロコシは図1のように多雨年次で効

表 3 転作畑の排水程度と適草種(昭和54・飯田)

排水の程度	主要な草種
不 良	青刈イネ 、キシュウスズメノヒエ
やや不良	ヒエ、ハトムギ、オオクサキビ
普 通	混種牧草、イタリアンライグラス、 ソルガム、ローズグラス、シコクビエ
良 好	サイレージ用トウモロコシ、青刈ムギ

注) 一部に特認の必要な草種を含む。


果がみられる。もちろん、重粘土壌では畑地化の 促進が必要で、転作1~2年はヒエ(ミレット)な ど、3~4年目はソルガム、5~6年目にトウモ ロコシを夏作にするなど、排水の程度によって表 3 のように草種の特性を生かすとよい。

同じ草種でも排水の良否によって表4のように 飼料価値の差が大きく,湿田では低質になる。そこで, 耐湿性の草種に過大な期待は問題で, しかも, 刈取り作 業には乾田条件の有利性が高い。

一方, 品種による耐湿性の差もあって, トウモロコシ の場合、P3424、PX77A、G4321A、PX50A、MT C12などは交3号よりも相対的に強い。また、梅雨期ま でに生育を促進できる早播きは湿害対策としても効果が あるし、プラウ耕起はロータリー耕起よりも湿害対策な どになる場合が多い。

図 1 暗渠の有無と収量性

(宮崎総農試)

一般的には、4~5月、そして、梅雨明けの7月末~ 8月末。さらに、秋雨期すぎの10~11月に播種や刈取り をすると作業性がよい。そこで、草種や品種の早晩生を 組合せて適期の一斉刈りなど、計画的な作業が条件にな るが, 労力配分や安定性などから作付体系は2~3, し かも, 大型機械の共同作業が有利である。

表 4 乾田と湿田での飼料価値 (吸地型牧草)

遊 和	10T	TDN(乾物中%)			
-T" 1.	種		H	乾	田
カラードギニアク	ブラス	46	.7	66	.6
カブラブラグ	ラス	50	. 3	69	. 1
マカリカリグ	ラス	45	. 8	52	.5
ギニアグ	ラス	51	. 8	60	.7
オオクサ	キビ	58	.5	70	. 3
ローズグ	ラス	45	. 9	60	.5
シコクヒ	Ľ	51	. 6	56	.5
平 均	I	50	. 7	62	. 3

注 1) 養牛の友、昭和57年1月号太田報告を引用・集計 2) TDN (可消化養分総量) は乾物分解率からの計算値

もちろん、草種の特性を生かすことが必要で、暖地で 排水がよい場合はサイレージ用トウモロコシとムギのホ ールクロップ利用、そして湿害の心配のある場合はソル ガムとイタリアンライグラスの2毛作が基本型になる。 しかし、排水の悪いときはヒエ (ミレット),オオクサキ ビ, 青刈イネなどを計画的に作るなど, いずれも夏作と 冬作を加えた年間の多収がポイントになる。

4. 各地の優良事例

集団化, 明渠や暗渠などによる排水対策は共通的で, しかも、大型機械での高能率作業が多い。とくに、借地 や作業受託によって飼料基盤を拡大し、通年サイレージ 方式でイナわらとヘイキューブを全く使わない酪農家が ふえている。最近は、肉用牛農家も積極的にとりくみ, 飼料生産組合などグループによる対応もみられ, 飼料の 自給率を大幅に高めている事例が多い。

岐阜県1町のT牧場の場合、所有水田の1.1haを全部 転作し、さらに、営農組合や兼業農家から約 10ha を借 地や作業受託している。この場合、サブソイラーによる 排水対策, さらに、排水の悪い場合は明渠を掘って、サ イレージ用トウモロコシは4月播と5月播の2グループ にしているが、湿害対策と労力配分、そして、安定多収 によって有利性を高めている。

冬作物はイタリアンライグラスとホールクロップ用ム ギを重点に、トウモロコシの早播き対策として秋作ムギ (8月末~9月上旬にエン麦と大麦の春播性の高い品種 を播種し、乳熟期前後の(12月に刈取る)も2~3ha作 っている。

群馬県M市のG機械利用組合は、約12haの水田転作を 共同でサイレージ用トウモコロシと秋作エン麦(乾草用) を主体にしているが、交換耕作によって団地化し成果を あげている。とくに、湿害対策とともに大型機械の作業 能率がよく、水系別の団地化やブロックローテーション もみられる。

富山県T市のKグループは、5集団の営農組合から約 24haの転作水田を3か年契約で農作業の委託をうけ、サ イレージ用トウモロコシ, スーダングラス(乾草生産) イタリアンライグラスを作っているが3戸の酪農家が大 型機極での共同作業のため、生草1kgあたりの生産費は 4.9円、全国平均の約45%と安く有利性は高い。

5. おわりに

水田転作を積極的に、計画的に利用すれば、飼料基盤 としての役割りが大きい。もちろん湿害対策としての排 水、大型機械の作業能率を高める団地化がポイントで、 草種や品種の特性を生かした栽培技術も必要である。

交換耕作や集団化は,地域としての対応が条件で,リ ーダーによって大きく左右される。ブロックローテーシ ョンは連作対策によいが、飼料生産には排水のよい大区 画の固定化が有利な場合も多い。とくに, 借地などによ る拡大と生産技術のレベルアップ, そして, 効率的な利 用によって有利性を高めたい。